Insiders View of Company Culture at Technologic Systems

 

TS-Stone-Sign-1600x400In every business, no matter how large or small, you work with others. Going to work means daily interaction with your fellow co-workers and workplace. Many people spend more time with their co-workers and workplace than they do their actual personal lives. So what keeps these employees happy and motivated? Company culture. It is a combined atmosphere that each workplace must consider, embrace, and nurture. It’s not just the people you work with or your everyday tasks. It’s a combination of absolutely everything you come in contact with, from the parking lot to the desk or chair you are at, or even the truck you drive (if it’s a company provided vehicle). Every one of these aspects is what makes up company culture.

Continue reading “Insiders View of Company Culture at Technologic Systems”

Risk Based Thinking, Transition to ISO9001:2015

iso-9001-2015

How Technologic Systems is preparing for the transition to ISO 9001:2015

ISO 9001 was designed to help organizations ensure that they meet the needs of customers and other stakeholders while meeting statutory and regulatory requirements related to a product or service. ISO 9001 deals with the fundamentals of Quality Management Systems, including the eight management principles upon which the family of standards is based. However, with the advent of ISO 9001:2015 upon us, it is clear that the paradigm regarding quality is changing as words and phrases like “Risk-Based Thinking”, “Leadership”, and “Evidence-based Decision Making” make their way into the forefront of Strategic Business Planning.

The new ISO 9001:2015 standard moves the subject of Management Systems into the boardroom. While this will be a cultural change, it is also a great opportunity for the enterprise leaders to improve their business overall. Continue reading “Risk Based Thinking, Transition to ISO9001:2015”

What I Wish I’d Known When I Was an Embedded Linux Newbie

 

embedded-linux-ts-board

Here are some tips compiled from our seasoned engineers on what they wish they’d known about embedded linux back when they were “newbs”.  Newcomers and seasoned veterans alike should get some good nuggets of information and possibly a fun perspective looking back at our own humble beginnings.  We’ll try not to overwhelm you as we make our way through the list.  We’re not here to rewrite the books, but do want to provide a personal perspective.  If you’re in the camp of people who’ve been using desktop Linux, just be aware embedded Linux is a different animal, especially when it comes to space constraints, different CPU architecture (ARM), resilience to sudden power outages, and inability to install any mainline Linux kernel or distribution you please.  And maybe you’re in the microprocessor camp moving towards a more generalized and capable embedded Linux system.  Either way, we’ll assume you have at least some knowledge of Linux as we walk through this guide.

Continue reading “What I Wish I’d Known When I Was an Embedded Linux Newbie”

Who’s (Not) Afraid of the Dark?

power-outage

The Dark Side

Weather is inevitable, downtime shouldn’t be. Per Information Week, in 2015 IT downtime alone costs $26.5 Billion in lost revenue. This does not take into account the loss of customer confidence, productivity, and supply chain interruptions that are a result of these outages. In a constantly wired world, service level agreements (SLAs) with online availability requirements of >99.9% is today’s de-facto standard. It is simply a fact of the new business model that downtime is no longer acceptable. Industry has done what it can to protect itself from these outages as much as possible, and a few of those options are laid out below. But the result is the same, enterprise level businesses can no longer operate without disaster recovery plan with as many contingencies in place as possible to ensure minimal rebound and recovery time should an outage occur. With embedded electronics permeating further into our everyday lives, partially in thanks to the Internet of Things, there are more and more devices that we need to worry about recovering once the lights come back on. So what can you do to fend off the darkness?

Continue reading “Who’s (Not) Afraid of the Dark?”

Reliable In-Vehicle Data Logging and Tracking

asset-tracking

Having access to live data from out in the field is incredibly valuable in making smart, informed decisions about your business. Fleet vehicle and other traveling asset operations benefit greatly from an in-vehicle data logging and tracking solution. The challenge is collecting and sharing this data reliably because of the inherent challenges with a mobile solution. For example, there are additional power supply considerations for a vehicle that is always starting and stopping. When power is unexpectedly cut off from the embedded data logger, there is a high likelihood of filesystem and data corruption. Another consideration is how to transfer the data once you’ve captured it via CAN or GPS. Thankfully, cellular network providers have done a great job at providing an always-available, nationwide service accessible from nearly anywhere. It would make sense to tap into this network using a cellular modem. Then, perhaps when the vehicle returns to a base station, WiFi or Bluetooth connections can be used to share auxiliary, non-real time data. Lastly, you’ll want to consider operating temperature ranges, as the inside a vehicle can easily reach 130 ºF to 170 ºF (54 ºC to 76 ºC) and on the opposite, reach “Ice Road Truckers” cold to -50 ºF (-45 ºC). It’s important to keep these considerations of power, temperature, and connectivity in mind in order to keep all this data safe and sound. The TS-7670 and TS-7680 single board computers are embedded systems which aim to provide reliable, low power, industrial-grade vehicle asset tracking solutions and solve these challenges.

Continue reading “Reliable In-Vehicle Data Logging and Tracking”

High Quality Embedded Products with IPC-A-610 Certified Technicians

Quality conscience project managers and engineers understand that when looking for a solutions provider, quality certifications are vitally important. Top of mind certifications, like ISO-9001, ensure reliable manufacturing, processing, and testing of end products before they’re packaged up and shipped out the door. In the embedded systems and electronics world, there is another quality certification called IPC-A-610 which is an international source for end product acceptance criteria for high reliability electronic components. This certification allows quality conscience decision makers to rest easy with their choice of embedded systems supplier knowing that all IPC-A-610 certified technicians and production employees are trained not only to spot and correct any physical defects, but also how to handle the end product to maximize life and dependability in the field.IPC-A-610 Logo

IPC-A-610 holds manufacturing technicians to a higher standard for testing and inspection. These trained Certified IPC Specialists (CIS) possess the knowledge to identify defects which could cause latent or immediate malfunction. Examples of such defects include:

 

  • Cold solder joint exampleA missed cold solder joint (pictured) could cause a latent power failure in the field due to the solder bond cracking.
  • Cracked components, which pass initial inspection, break under the forces experienced in the shipping and receiving process.
  • Loose solder balls that when dislodged, can cause a short between traces on the PCB board and result in damaging sensitive components and board failure.

All CIS are trained to carefully detect all of these issues, among others, to ensure the embedded system performs reliably in the field. On top of spotting and correcting any physical defects, they are also trained to be careful when handling the boards to maximize the life of the board in the field. This is important, since a small percentage of a boards life is diminished every time a soldering iron or non-ESD protected person touches it. CIS understand that even oils and salts from their fingers can contaminate the board, causing latent issues.

There are three classification standards for the accept/reject criteria defined by IPC: Class 1 being general electronic products where the only requirement is to function, Class 2 being dedicated service electronic products where continued performance and extended life is required as well as uninterrupted service is not critical but desired, and Class 3 being high performance/harsh environment electronic products where continued high performance or performance-on-demand is critical to the working end product and must not fail, such as a life support machine at a hospital. All CIS are trained for all three of these classifications for the utmost quality assurance.

Highly reliable embedded system deployments start with choosing a partner who not only carries certifications for manufacturing, process, and designing through ISO-9001, but also employs highly trained, IPC-A-610 certified technicians and production personnel to ensure proper handling and repair throughout the entire process.

Here at Technologic Systems, we pride ourselves in our product quality, ensuring our customers get the highest quality end product. Our entire production team is not only IPC-A-610 certified, they are passionate about quality, keeping up to speed on new quality standards to ensure top level performance and life out of our products. We take extensive care in making sure that the product is carefully handled and meets the highest acceptance criteria so that our customers will be getting what they deserve.

“IPC training has given me greater knowledge and understanding of what can cause a latent problem on boards in the near or distant future. Before going to training I would say that you could consider me to be meticulous with the quality of the product I am working with. But I didn’t realize that even something as small as the oils on my hands can cause latent problems for the board. I also learned that there is a long-term cost to making repairs so that on components with metalization loss it’s actually better not to repair it if the loss is still within the acceptable range.” — Camron Vogelzang, Repair Technician

The Time for Industrial IoT is Now

The Time for Industrial IoT is Now

While home automation first put the Internet of Things concept into the technology mainstream, industrial IoT is where this nascent high-tech sector’s growth truly lies. Companies of all sizes, spanning many different industries, hope to gain a competitive advantage using a variety of IoT applications.

A typical industrial IoT scenario involves data from sensors embedded inside equipment that communicates with a small gateway computer connected to the Internet. A remote data analyst or engineer uses this information in a myriad of ways. The ultimate goal of the application could be optimizing performance by detecting either hardware breakdowns or simply inefficient operation.

Frankly, this is only one of many different possibilities. Let’s dive into some reasons why the time for industrial IoT is today.

Continue reading “The Time for Industrial IoT is Now”