CPU_RESET# is bi-directional and can be programmed to cause interrupt instead of reset.
3.3V Supply

- **1.5V Supply**
 - LDO to FPGA Core
 - 1.5V Supply

- **1.0V Supply**
 - To CPU Core

- **1.8V Supply**
 - 1.8V Supply

- **POR**
 - POR chip holds LOW_VOLT#
 - Low for 200 ms after "VCC" Max above 2.5V
 - "POWER" ≤ 5.2V Typ
10/100 Ethernet

To CPU
MAC

LED1 = Activity/Link
LED2 = Speed 100 Mbit
512 MB or 2 GB NAND Flash

64KB Serial Boot Flash

RTC

Temp Sensor

Micro SD Card Socket

8K Byte NVRAM

Time constant = 47 nS

NAND_WPSTATE

NAND ALE

NAND CLE

NAND CS#

NAND RD#

NAND WR# MUX AD00

NAND_BUSY#

1.8V

3.3V

1.8V

3.3V
Two 100-pin Off-board Connectors

POWER pins supply all power to the module
Apply 3.3V to 5.5V to these pins

Current drain is 50mA to 400 mA

POWER FAIL# must not be driven high

OFF,BD_RESET# is an Output
used to reset all peripherals

OFF,BD_RESET# is a Output
designed to assert prior to
M ODE1 and **M ODE2** states

Apply 3.6V to 5.5V to these pins

M ODE2 and **M ODE3** states
are locked prior to
OFF,BD_RESET# assertion

MODE1 and MODE3 have DC/AC mixers

MODE0 and MODE2 have DC/AC mixers

MODE0 and MODE2 states
are locked prior to
OFF,BD_RESET# assertion

These DIO have 1.8V levels
PC4, PC5, PC6
PC7, PC8, PC9
PC10, PC13, PC14

All other DIO uses 3.3V levels

BUS_DIR = MODE2

Devices connected to this bus must never
drive it when BUS_CS# is deasserted
(must be off within 50 ns of deassert)

Device must pull the BUS_WAIT# line low
if they need more than 150 ns strobe

BUS_ALE# = Address Latch Enable
BUS_BHE# = Byte High Enable (for 16-bit cycles)

BUS_ALE# and **BUS_BHE#** states
are locked prior to
OFF,BD_RESET# assertion

EXT_RESET# is an Input
used to reset the CPU

CN2 pin 27 should be connected
to CN2 pin 33 on the base board

CN2 pin 27 should be connected
to CN2 pin 33 on the base board

CN2 pin 27 should be connected
to CN2 pin 33 on the base board

3.3V max load is 500 mA

Minimum off-board load
on 3.3V, 1.5V and
1.8V pins is 10 mA each

- Bus Control signals
- MUX_AD08 through 15
- MUX_AD14 through 15
- MUX_AD[00:15]

- SPI0_CLK
- SPI0_CSN
- SPI0_SCK
- SPI0_MOSI

- UART0
- UART1
- UART2
- UART3
- UART4
- UART5

USB Ports

- USB0
- USB1
- USB2
- USB3
- USB4
- USB5

Ethernet

- A/D
- I2C
- I2S
- CPU
- JTAG

SD Card

- SD Card signals on connector
- are wired in parallel with
- SD card socket. Only one
- can be populated with SD card

Data Bus

- BUS_WAIT#
- SPI0_CLK
- SPI0_CSN
- SPI0_SCK
- SPI0_MOSI

These 1.8K ohm resistors
on "OFF_BD_RESET#" turn Mode pins "low"

The data bus can not have more than
50 pF of off-board capacitive loading
May need data buffer chip for heavy loads

Bus Control

Console

SPI

- RED LED#
- GREEN LED

- TX-
- 1.0V_BU
- RX+
- 1.5V
- 1.8V

- PA22
- PA31
- PB11
- PB9
- PB8
- PB5

- UART1
- UART2
- UART3
- UART4
- UART5

- 10 nF C131
- 10 nF

- PB24
- PB23
- PB22
- PB21
- PB20
- PB19

- 1.0V
- 1.5V
- 1.8V

- PC7
- PC8
- PC9
- PC10
- PC11
- PC12

- UART0
- UART1
- UART2
- UART3
- UART4
- UART5

- I2C
- SPI
- USB
- Ethernet

- PC13
- PC14
- PC15
- PC16
- PC17
- PC18

- 1000 SPI
- 100 UART
- 100 USB
- 100 Ethernet

- 100 Power
- 100 Clock
- 100 reset
- 100 Clear

- 100 FPGA
- 100 JTAG
- 100 Ethernet
- 100 SPI
- 100 USB
- 100 UART

- 100 SPI
- 100 USB
- 100 UART

- 100 SPI
- 100 USB
- 100 UART

- 100 SPI
- 100 USB
- 100 UART